中国农业机械化科学研究院集团有限公司 主管

北京卓众出版有限公司 主办

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主成分和云模型的冬小麦种植信息提取方法

孙秀邦 黄勇 李德 胡文运 胡安霞 田青

孙秀邦,黄勇,李德,等.基于主成分和云模型的冬小麦种植信息提取方法[J].农业工程,2022,12(11):37-43. doi: 10.19998/j.cnki.2095-1795.2022.11.007
引用本文: 孙秀邦,黄勇,李德,等.基于主成分和云模型的冬小麦种植信息提取方法[J].农业工程,2022,12(11):37-43. doi: 10.19998/j.cnki.2095-1795.2022.11.007
SUN Xiubang,HUANG Yong,LI De,et al.Winter wheat planting information extraction based on principal component and cloud model[J].Agricultural Engineering,2022,12(11):37-43. doi: 10.19998/j.cnki.2095-1795.2022.11.007
Citation: SUN Xiubang,HUANG Yong,LI De,et al.Winter wheat planting information extraction based on principal component and cloud model[J].Agricultural Engineering,2022,12(11):37-43. doi: 10.19998/j.cnki.2095-1795.2022.11.007

基于主成分和云模型的冬小麦种植信息提取方法

doi: 10.19998/j.cnki.2095-1795.2022.11.007
基金项目: 中国气象局创新发展专项(CXSZ2022P043);中国气象局中央财政乡村振兴气象服务专项(2021)
详细信息
    作者简介:

    孙秀邦,硕士,高级工程师,主要从事农业气象、农业遥感信息提取与图像解译研究E-mail:117924283@qq.com

    黄勇,通信作者,博士,正研级高级工程师,主要从事大气遥感研究 E-mail:hy121-2000@126.com

  • 中图分类号: S162.5

Winter Wheat Planting Information Extraction Based on Principal Component and Cloud Model

  • 摘要:

    在对Sentinel-2卫星遥感影像进行预处理的基础上,利用主成分变化提取小麦主要信息,基于云模型算法开展光谱遥感图像分类。分类时,首先根据训练样本集,由逆向云发生器生成典型小麦的云模型,然后利用云发生器计算出各波段每个象元对小麦地物的平均隶属度,在对各波段的隶属度分析基础上,摒弃含有复杂信息的第1主成分,利用第2主成分和第3主成分信息实现对冬小麦种植空间信息的提取。结果表明,提取小麦种植信息制图精度和用户精度分别为92.78%和99.90%,小麦种植田块的隶属度值因小麦长势和密度的不同有较大的差异,云模型对长势较差、密度较低的小麦像元存在漏分现象。基于云模型的算法精度极高,对小麦地块的识别错分、漏分现象少。该模型有助于冬小麦种植面积的精确提取,对于农业部门进行冬小麦生长监测与产量估测有重要的支撑作用。

     

  • 图 1  小麦提取流程

    Figure 1.  Flow chart of wheat extraction

    图 2  PCA变换前后对比

    Figure 2.  Comparison before and after PCA transformation

    图 3  “小麦”概念云模型

    Figure 3.  "Wheat" conceptual cloud model

    图 4  区域精度检验结果

    Figure 4.  Regional accuracy test results

    表  1  哨兵-2A 光谱波段信息

    Table  1.   Sentinel-2A spectral band information

    波段波长/μm分辨率/m
    Band2(蓝光)0.49010
    Band3(绿光)0.56010
    Band4(红光)0.66510
    Band5(红边1)0.70520
    Band6(红边1)0.74020
    Band7(红边1)0.78320
    Band8(近红外)0.84210
    Band8A(红边4)0.86520
    Band11(短波红外1)1.61420
    Band12(短波红外2)2.20220
    下载: 导出CSV

    表  2  主成分协方差特征向量矩阵及统计分析

    Table  2.   Principal component covariance eigenvector matrix and statistical analysis

    项目PC1PC2PC3PC4PC5PC6PC7PC8PC9PC10
    Band2−0.0180.321−0.287−0.122−0.582−0.1150.3280.093−0.154−0.555
    Band3−0.0410.316−0.426−0.081−0.1590.2090.314−0.2830.0150.680
    Band4−0.0370.441−0.360−0.0220.1060.324−0.6700.0210.263−0.198
    Band5−0.1110.350−0.2350.2370.566−0.2340.1950.453−0.3680.023
    Band6−0.390−0.034−0.1320.3590.263−0.0970.324−0.4200.504−0.292
    Band7−0.469−0.151−0.1170.313−0.208−0.155−0.375−0.341−0.5640.048
    Band8−0.529−0.166−0.112−0.7910.217−0.0660.0130.028−0.022−0.043
    Band8A−0.499−0.1520.0460.253−0.3320.2340.0230.6220.2690.192
    Band11−0.2450.4010.588−0.0150.0870.5440.172−0.155−0.247−0.120
    Band12−0.1530.4940.400−0.073−0.163−0.629−0.174−0.0250.2550.222
    特征值2701053.3463642.1197268.041346.418464.46353.04798.23807.23143.72354.6
    贡献率0.7850.1350.0570.0120.0050.0020.0010.0010.0010.001
    累计贡献率0.7850.9190.9770.9890.9940.9960.9970.9980.9991.000
    下载: 导出CSV

    表  3  主成分图像云模型参数

    Table  3.   Principal component image cloud model parameters

    模型参数PC1PC2PC3
    $ {E}_{x} $−3480−1357−276
    $ {E}_{n} $78320695
    $ {H}_{e} $1874420
    CD0.720.640.63
    下载: 导出CSV
  • [1] 吴炳方, 张淼, 曾红伟, 等.大数据时代的农情监测与预警[J].遥感学报, 2016, 20(5): 1 027-1 037.

    WU Bingfang, ZHANG Miao, ZENG Hongwei, et al.Agricultural monitoring and early warning in the era of big data [J].Journal of Remote Sensing, 2016, 20(5): 1 027-1 037.
    [2] 陈仲新,任建强,唐华俊,等.农业遥感研究应用进展与展望[J].遥感学报,2016,20(5):748-767.

    CHEN Zhongxin,REN Jianqiang,TANG Huajun,et al.Progress and prospectives on agricultural remote sensing research and applications in China[J].Journal of Remote Sensing,2016,20(5):748-767.
    [3] 史舟,梁宗正,杨媛媛,等.农业遥感研究现状与展望[J].农业机械学报,2015,46(2):247-260. doi: 10.6041/j.issn.1000-1298.2015.02.037

    SHI Zhou,LIANG Zongzheng,YANG Yuanyuan,et al.Status and prospect of agricultural remote sensing[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):247-260. doi: 10.6041/j.issn.1000-1298.2015.02.037
    [4] 程永政.多尺度农作物遥感监测方法及应用研究[D].南京: 解放军信息工程大学, 2009.

    CHENG Yongzheng.The study on the methods for multi-scale crop monitoring by remote sensing [D].Nanjing: PLA University of Information Engineering, 2009.
    [5] 段春华,张汛,尹凡.基于国产高分卫星影像的水稻种植区提取:以江苏苏中地区为例[J].卫星应用,2021(2):59-64. doi: 10.3969/j.issn.1674-9030.2021.02.013
    [6] 王霄煜,雷钧.基于高分一号卫星数据的新疆棉花种植面积信息提取研究[J].新疆农业科技,2021(1):23-26. doi: 10.3969/j.issn.1007-3574.2021.01.011
    [7] 薛宇飞,张军,张萍,等.基于Sentinel-2遥感影像的烟草种植信息精准提取[J].中国烟草科学,2022,43(1):96-106. doi: 10.13496/j.issn.1007-5119.2022.01.015

    XUE Yufei,ZHANG Jun,ZHANG Ping,et al.Object-oriented accurate extraction of tobacco information based on sentinel-2 remote sensing images[J].China Tobacco Science,2022,43(1):96-106. doi: 10.13496/j.issn.1007-5119.2022.01.015
    [8] 王朝阳,师银芳,侯诚.基于Sentinel-2A影像的枸杞种植区域识别[J].生态学杂志,2022,41(5): 1033- 1040. doi: 10.13292/j.1000-4890.202205.007

    WANG Chaoyang,SHI Yinfang,HOU Cheng.Recognition and extraction of planting area of Chinese wolfberry based on Sentinel-2A[J].Chinese Journal of Ecology,2022,41(5): 1033 - 1040. doi: 10.13292/j.1000-4890.202205.007
    [9] 王爱芳,张运,黄静,等.作物遥感分类研究进展[J].测绘与空间地理信息,2021,44(10):80- 83,88. doi: 10.3969/j.issn.1672-5867.2021.10.021

    WANG Aifang,ZHANG Yun,HUANG Jing,et al.Recent progresses in research of crop classification by using remote sensing[J].Geomatics & Spatial Information Technolog,2021,44(10):80- 83,88. doi: 10.3969/j.issn.1672-5867.2021.10.021
    [10] 申怀飞.基于遥感多时相影像的南海北部湾地区地物分类与识别方法研究[D].南京: 南京大学, 2018.

    SHEN Huaifei.Research on the classification and recognization methods of objects based on multi-temporal remote sensing images in Beibu Gulf region of the South China Sea [D].Nanjing: Nanjing University, 2018.
    [11] 佘宝,黄敬峰,石晶晶,等.基于红边位置变化特征的油菜种植区域提取[J].农业工程学报,2013,29(15):145-152. doi: 10.3969/j.issn.1002-6819.2013.15.018

    SHE Bao,HUANG Jingfeng,SHI Jingjing,et al.Extracting oilseed rape growing regions based on variation characteristics of red edge position[J].Transactions of the Chinese Society of Agricultural Engineering,2013,29(15):145-152. doi: 10.3969/j.issn.1002-6819.2013.15.018
    [12] 王冬利, 张安兵, 赵安周, 等.非监督分类的冬小麦种植信息提取模型[J].测绘通报, 2019(8): 68-71, 77.

    WANG Dongli, ZHANG Anbing, ZHAO Anzhou, et al.Extraction model of winter wheat planting information based on unsupervised classification [J].Bulletin of Surveying and Mapping, 2019(8): 68-71, 77.
    [13] 牟多铎,刘磊.ELM与SVM在高光谱遥感图像监督分类中的比较研究[J].遥感技术与应用,2019,34(1):115-124.

    MU Duoduo,LIU Lei.Comparative study of ELM and SVM in hyperspectral image supervision classification[J].Remote Sensing Technology and Application,2019,34(1):115-124.
    [14] 孙秀邦,范伟,严平,等.遥感影像土地覆被分类研究进展[J].中国农学通报,2007,23(9):607-610. doi: 10.3969/j.issn.1000-6850.2007.09.129

    SUN Xiubang,FAN Wei,YAN Ping,et al.A brief review on the classification methods of land cover based on remote sensing image[J].Chinese Agricultural Science Bulletin,2007,23(9):607-610. doi: 10.3969/j.issn.1000-6850.2007.09.129
    [15] 王小明,毛梦祺,张昌景,等.基于支持向量机的遥感影像分类比较研究[J].测绘与空间地理信息,2013,36(4):17- 20,23. doi: 10.3969/j.issn.1672-5867.2013.04.005

    WANG Xiaoming,MAO Mengqi,ZHANG Changjing,et al.Comparative study on classification of remote seining image by support vector machine[J].Geomatics & Spatial Information Technology,2013,36(4):17- 20,23. doi: 10.3969/j.issn.1672-5867.2013.04.005
    [16] 罗桓,李卫国,景元书,等.基于SVM的县域冬小麦种植面积遥感提取[J].麦类作物学报,2019,39(4):455-462. doi: 10.7606/j.issn.1009-1041.2019.04.11

    LUO Huan,LI Weiguo,JING Yuanshu,et al.Remote sensing extraction of county winter wheat planting area based on SVM[J].Journal of Triticeae Crops,2019,39(4):455-462. doi: 10.7606/j.issn.1009-1041.2019.04.11
    [17] 周珂, 柳乐, 张俨娜, 等.GEE支持下的河南省冬小麦面积提取及长势监测[J].中国农业科学, 2021, 54(11): 2 302-2 318.

    ZHOU Ke, LIU Le, ZHANG Yanna, et al.Area extraction and growth monitoring of winter wheat in Henan province by Google Earth Engine [J].Scientia Agricultura Sinica, 2021, 54(11): 2 302-2 318.
    [18] 张国良.基于U-Net的葡萄种植区遥感影像变化检测[D].杨凌: 西北农林科技大学, 2021.

    ZHANG Guoliang.Remote sensing images change detection of grape plantation based on U-Net[D].Yangling: Northwest A&F University, 2021.
    [19] 刘戈, 姜小光, 唐伯惠.特征优选与卷积神经网络在农作物精细分类中的应用研究[J].地球信息科学学报, 2021, 23(6): 1 071-1 081.

    LIU Ge, JIANG Xiaoguang, TANG Bohui.Application of feature optimization and convolutional neural network in crop classification [J].Journal of Geo-Information Science, 2021, 23(6): 1 071-1 081.
    [20] 李德毅, 杜鹢.不确定性人工智能[M].北京: 国防工业出版社, 2014: 44-50.
    [21] 汪甜甜,费坤,江文娟,等.宣州区耕地质量等级评价及灌排能力对耕地质量影响[J].灌溉排水学报,2021,40(11):79-89. doi: 10.13522/j.cnki.ggps.2021126

    WANG Tiantian,FEI Kun,JIANG Wenjuan,et al.Soil quality classification and the impact of irrigation and drainage in the region of Xuanzhou in Anhui province[J].Journal of Irrigation and Drainage,2021,40(11):79-89. doi: 10.13522/j.cnki.ggps.2021126
    [22] 王本文.自然资源管理概况[M]// 洪明祥.宣州年鉴.时代出版传媒股份有限公司黄山书社, 2020: 45-60.
    [23] 李煜,李崇贵,刘思涵,等.应用哨兵2A多时相遥感影像对树种的识别[J].东北林业大学学报,2021,49(3):44- 47,51. doi: 10.3969/j.issn.1000-5382.2021.03.008

    LI Yu,LI Chonggui,LIU Sihan,et al.Tree species recognition with Sentinel-2A multitemporal remote sensing image[J].Journal of Northeast Forestry University,2021,49(3):44- 47,51. doi: 10.3969/j.issn.1000-5382.2021.03.008
    [24] 田野,赵春晖,季亚新.主成分分析在高光谱遥感图像降维中的应用[J].哈尔滨师范大学自然科学学报,2007,23(5):58-60.

    TIAN Ye,ZHAO Chunhui,JI Yaxin.The principal component analysis applied to hyperspectral remote sensing imagedimensional reduction[J].Natural Science Journal of Harbin Normal University,2007,23(5):58-60.
    [25] 邓广林,邵美珍.遥感图像分析中的主成分分析[J].遥感信息,1989(4):13- 16,53.
    [26] 刘常昱,李德毅,潘莉莉.基于云模型的不确定性知识表示[J].计算机工程与应用,2004,40(2):32-35. doi: 10.3321/j.issn:1002-8331.2004.02.011

    LIU Changyu,LI Deyi,PAN Lili.Uncertain knowledge representation based on cloud model[J].Computer Engineering and Applications,2004,40(2):32-35. doi: 10.3321/j.issn:1002-8331.2004.02.011
    [27] 周婷, 邹俊, 崔玉环, 等.基于主成分分析和支持向量机的遥感影像水体提取方法及应用[J/OL].水资源保护.http://kns.cnki.net/kcms/detail/32.1356.TV.20220407.1836.006.html.

    ZHOU Ting, ZOU Jun, CUI Yuhuan, et al.PCA-SVM based water area extraction method for remote sensing images and its application in Chaohu Lake[J/OL].Water Resources Protection.http://kns.cnki.net/kcms/detail/32.1356.TV.20220407.1836.006.html.
    [28] 辛文杰, 马姜明, 王永琪.基于遥感生态指数的桂林市生态环境质量评价[J/OL].广西师范大学学报(自然科学版).https://doi.org/10.16088/j.issn.1001-6600.2021101004.

    XIN Wenjie, MA Jiangming, WANG Yongqi.Eco-environmental quality assessment of Guilin city based on remote sensing ecological index[J/OL].Journal of Guangxi Normal University (Natural Science Edition), https://doi.org/10.16088/j.issn.1001-6600.2021101004.
    [29] 黄振兴,李满根,封志兵,等.基于遥感生态指数的生态环境质量变化分析:以抚州市东乡区为例[J].东华理工大学学报(自然科学版),2022,45(1):60-66. doi: 10.3969/j.issn.1674-3504.2022.01.008

    HUANG Zhenxing,LI Mangen,FENG Zhibing,et al.Ecological environment change in Dongxiang district based on remote sensing ecological index[J].Journal of East China Institute of Technology (Natural Science Edition),2022,45(1):60-66. doi: 10.3969/j.issn.1674-3504.2022.01.008
    [30] 马战林,薛华柱,刘昌华,等.基于主被动遥感数据和面向对象的大蒜识别[J].农业工程学报,2022,38(2):210-222. doi: 10.11975/j.issn.1002-6819.2022.02.024

    MA Zhanlin,XUE Huazhu,LIU Changhua,et al.Garlic Identification of garlic based on active and passive remote sensing data and object-oriented technology[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(2):210-222. doi: 10.11975/j.issn.1002-6819.2022.02.024
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  9
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-09-26
  • 出版日期:  2022-11-20

目录

    /

    返回文章
    返回