中国农业机械化科学研究院集团有限公司 主管

北京卓众出版有限公司 主办

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粮食干燥绿色低碳技术现状与展望

徐创军

徐创军.粮食干燥绿色低碳技术现状与展望[J].农业工程,2024,14(2):94-101. doi: 10.19998/j.cnki.2095-1795.2024.02.016
引用本文: 徐创军.粮食干燥绿色低碳技术现状与展望[J].农业工程,2024,14(2):94-101. doi: 10.19998/j.cnki.2095-1795.2024.02.016
XU Chuangjun.Research status and prospect on green and low-carbon technology of grain drying[J].Agricultural Engineering,2024,14(2):94-101. doi: 10.19998/j.cnki.2095-1795.2024.02.016
Citation: XU Chuangjun.Research status and prospect on green and low-carbon technology of grain drying[J].Agricultural Engineering,2024,14(2):94-101. doi: 10.19998/j.cnki.2095-1795.2024.02.016

粮食干燥绿色低碳技术现状与展望

doi: 10.19998/j.cnki.2095-1795.2024.02.016
详细信息
    作者简介:

    徐创军,本科,主要从事农业农村产业发展与乡村振兴研究E-mail:16600041293@163.com

  • 中图分类号: S226

Research Status and Prospect on Green and Low-carbon Technology of Grain Drying

  • 摘要:

    粮食干燥是保障国家粮食安全的重要生产环节,但干燥低碳减排技术处于落后状态。基于粮食机械化干燥技术现状,分别从干燥系统供热方式、干燥工艺设计和干燥控制技术3个方面分析了粮食干燥高能耗的主要原因,重点比较了机械化干燥工艺与节能改进方法;梳理干燥理论与智能调控研发历程,讨论粮食干燥智能化技术特征和进展,分析了粮食干燥智能化存在信息感知困难、算法精度差、控制策略单一等问题;提出了粮食干燥理论研究范式创新、干燥装备设计与工艺优化、干燥智能控制方法体系构建等产业发展建议,为粮食干燥节能减排新技术创新及产业高质量发展提供借鉴。

     

  • 表  1  不同粮食干燥工艺与节能减排性能分析

    Table  1.   Analysis of different grain drying processes and performance of energy saving and emission reduction

    干燥工艺 工艺特点 研究结论 绿色发展方向
    多段变温缓苏[18] 综合考虑粮食品质、干燥能耗、环保、粮食用途及成本等因素;根据水分去除机理和粮食受热等分为若干段不同温度干燥粮食;缓苏为了减少粮食干燥爆腰 以稻谷为例,其干燥含水率均匀度较高99.6%,能有效缩短干燥时间,干燥速率0.036%/min,缓苏工艺对爆腰率有显著降低的效果 多段变温和缓苏工艺有效减少干燥能耗,对干燥产物品质保持较好,其对温度稳定调节和水分、品质的在线检测技术要求较高
    顺逆流组合干燥[19-20] 将顺流与逆流干燥技术组合,并采用其独特的通风节布风结构,适合于干燥低温高水分粮食 顺逆流干燥技术比顺流干燥技术加逆流冷却工艺的能耗率低5%,比逆流干燥技术的能耗率低8%;建立回归分析模型预测出机水分,减少能源消耗 最大限度地进行水分与热量的转移,烘干废气温度40 °C,冷却段由于粮温热量也可使得空气温度达到35 °C,可以采取余热回收方式将两种空气重新收集送入换热器中达到节能效果
    顺混流组合干燥[21] 将顺流与混流干燥技术组合,并采用其独特的通风节布风结构及密布角状管的一种组合干燥技术和设备,适合于干燥低温高水分粮食,尤其适合于低温高水分粮食的节能保质干燥 以HSHT15型顺混流干燥机为例,具有热效率高、节能明显、烘后粮食品质好、烘后粮食干燥不均匀度1.6%、破碎率增值1.%和裂纹率增值3.0% 选择余热回收技术,收集顺流段烘干废气,混流段的干燥效率较高,整体顺混流系统热量利用率较高
    逆顺流组合干燥[22] 将逆流与顺流干燥技术组合,并采用均匀布风技术,实行多段、变温和缓苏干燥,适合于稻谷、油料等非耐热物料的保质节能干燥 以HNST500环保型连续式逆顺流高水分稻谷保质干燥机为例,逆流和顺流交替进行,每一级逆流和顺流干燥后设置一级缓苏,干燥缓苏级数随降水幅 度的增大而增加 采用废气回收装置,循环利用干燥段和冷却段废气,控制废气出口风速来减少废气排放带出的粉尘
    高低温组合干燥[23] 粮食先经高温连续干燥,当水分降到17%~18%时,将粮食转移到通风干燥仓内,采用就仓干燥技术,低温大风量通风干燥去除剩余的水分 高低温组合干燥技术和设备具有能耗低、干燥后粮食品质好的优点,但是要配置大容量的通风干燥仓,占地面积大 热量利用率较高,但缺少余热回收装置和机构,对于就仓干燥来说干燥均匀性和品质保持都有一定的技术难度
    下载: 导出CSV

    表  2  基于人工智能的粮食干燥控制算法分析

    Table  2.   Analysis of grain drying control algorithm based on artificial intelligence

    对象类型 运用算法和控制器 性能分析
    稻谷干燥[38] 长短期记忆神经网络(LSTM)和模型预测控制(MPC)耦合控制器 与常规PID控制器相比,LSTM-MPC控制器响应速度提升15%~30%,干燥后出机水分控制精度提升0.2%以上,具有更强的鲁棒性
    稻谷干燥[39] 优化长短期记忆神经网络(LSTM) 与BP、ELMAN、NAEX等算法及普通LSTM网络进行比较,结果发现优化的LSTM模型可以更好地预测稻谷出机水分,平均绝对误差0.12%
    玉米干燥[40] 极限学习机(ELM) 构建了出机水分含量预测模型,水分含量预测误差0.2811%~0.3821%,未出现过拟合情况
    玉米干燥[41] BP神经网络 建立出机含水率预测模型,模型预测排粮电机转速误差−5~5 r/min,相关系数0.98419,可以有效预测排粮电机转速和出机玉米含水率
    玉米干燥[42] BP神经网络 快速准确地建立模型描述排粮频率变化规律,模型相关系数0.9491,用于自动控制排粮频率来控制干燥机内粮食流量,进而控制粮食含水率及过度干燥问题
    5HNH-15型连续式
    粮食干燥机[43]
    8-11-1的BP神经网络 模型决定系数0.998,绝对误差±0.1,解决了建立被控对象模型难度大问题,可为智能控制应用提供基础
    多筒式烘干机[44] BP神经网络模型的Sigmoid函数 模拟生物神经元,实现非线性数据处理,增强神经网络的非线性映射能力,开发了智能预测控制系统软件,系统提高了整体粮食烘干塔干燥处理效率
    智能模拟系统[45] 包括在线水分、温度、视频监控系统和计算机模拟控制与管理系统 软件主要用于预测干燥机干燥粮食的效果,分析粮食干燥过程,辅助优化最佳干燥参数,建立对应的干燥控制程序
    物联网监控系统[46] 粮食烘干储藏一体化物联网 实现了粮食干燥、粮仓环节的关键参数实时远程监测、报警及关键设备自动控制功能,为粮食高效节能烘干提供了新思路,有广阔的应用前景
    下载: 导出CSV
  • [1] 梁凯,梁皓,邢福国,等.“气吸循环式粮食干燥机”粮食保质减损、增产增效探索研究[J].河北农机,2023(14): 12 - 14 .
    [2] 宋波,许建伟,袁烨.粮食干燥机械节能减排现存问题及完善措施[J].中国新技术新产品,2019(14): 57 - 58 .
    [3] 李贺新,王洋,吴文福,等.粮食干燥节能减排技术研究现状与展望[J].农业与技术,2014,34(4):212,214.
    [4] 潘保利.连续式粮食干燥机节能减排技术的研究[D].哈尔滨:东北农业大学.2018.

    PAN Baoli.Research on energy saving and emission reduction technology of continuous grain dryer[D].Harbin:Northeast Agricultural University.2018.
    [5] 肖彦民,贾煜,陈敬举,等.稻壳循环流化床热风炉的炉膛结构设计[J].粮食流通技术,2014(4): 22 - 24 .

    XIAO Yanmin,JIA Yu,CHEN Jingju,et al.The structural design of husk circulating fluidized bed hot blast stove[J].Grain Distribution Technology,2014(4): 22 - 24 .
    [6] 尹思万,尹晓慧.5LWD-180型燃稻壳反烧热风炉[J].现代化农业,2009(5): 38 - 39 .
    [7] 毕顺林,路少昆.5LXZR旋浮式稻壳热风炉[J].现代化农业,2011(12): 46 - 47 .
    [8] SAKARE P,PRASAD N,THOMBARE N,et al.Infrared drying of food materials:recent advances[J].Food Engineering Reviews,2020,12(3): 381 - 398 . doi: 10.1007/s12393-020-09237-w
    [9] 汪喜波,胡琼,肖波,等.稻谷红外辐射与对流联合干燥过程的模型模拟[J].农业机械学报,2013,44(9): 145 - 151 .

    WANG Xibo,HU Qiong,XIAO Bo,et al.Modeling simulation of combined convective and infrared radiation in rice drying process[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(9): 145 - 151 .
    [10] 严薇.红外辐射对储藏稻谷脂质代谢的影响研究[D].南京:南京财经大学,2020.

    YAN Wei.Study on the effect of infrared radiation on lipid metabolism of stored rice[D] Nanjing:Nanjing University of Finance and Economics,2020.
    [11] 王珏,徐嘉良.热泵技术可补粮食干燥高能耗短板[J].农机市场,2022(6): 27 - 28 .
    [12] 黄毅成,於海明,缪磊,等.热泵干燥技术研究现状及发展趋势[J].农业工程,2020,10(6): 61 - 65 .

    HUANG Yicheng,YU Haiming,MIAO Lei,et al.Research status and development trend of heat pump drying technology[J].Agricultural Engineering,2020,10(6): 61 - 65 .
    [13] 吴炜,倪美琴,江莹莹,等.基于排风热回收的空气源热泵粮食干燥系统运行特性的研究[J].可再生能源,2023,41(1): 46 - 52 .

    WU Wei,NI Meiqin,JIANG Yingying,et al.Study on operation characteristics of air source heat ump grain drying system based on exhaust heat recovery[J].Renewable Energy Resources,2023,41(1): 46 - 52 .
    [14] 郭仁宁,任常在,冯新伟.变频回热式热泵烤烟房的研究[J].黑龙江农业科学,2012(3): 139 - 142 .

    GUO Renning,REN Changzai,FENG Xinwei.Research on frequency conversion regenerative heat pump cured tobacco room[J].Heilongjiang Agricultural Sciences,2012(3): 139 - 142 .
    [15] 闫素英,赵龙,王群.太阳能热泵联合系统的枸杞干燥特性与能耗分析[J].太阳能学报,2023,44(12): 106 - 112 .

    YAN Suying,ZHAO Long,WANG Qun.Dryimg characteristics and energy consumption analysis of solar heat pump combined system of wolfberry[J].Acta Energiae Solaris Sinica,2023,44(12): 106 - 112 .
    [16] 杨博,王未君,李文林.热泵−微波联合干燥技术研究进展[J].食品工业,2022,43(7): 202 - 206 .

    YANG Bo,WANG Weijun,LI Wenlin.The research progress of heat pump-microwave combined drying technology[J].The Food Industry,2022,43(7): 202 - 206 .
    [17] 李爱民,余琼粉,李明,等.太阳能干燥装置的结构研究进展及其应用[J].云南师范大学学报(自然科学版),2023,43(4): 9 - 18 .

    LI Aimin,YU Qiongfen,LI Ming,et al.Research progress on the structure of solar dryer and its applications[J].Journal of Yunnan Normal University(Natural Sciences Edition),2023,43(4): 9 - 18 .
    [18] 刘春山,陈思羽,肖世伟,等.稻谷变温均质干燥装置工艺优化与性能试验[J].农业机械学报,2023,54(S1): 366 - 372 .

    LIU Chunshan,CHEN Siyu,XIAO Shiwei,et al.Process research and performance verification of variable temperature homogeneous drying device for paddy[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(S1): 366 - 372 .
    [19] 罗栋,孙慧男,夏朝勇.我国顺逆流连续式烘干机的发展现状[J].现代食品,2021(8): 23 - 24,29 .

    LUO Dong,SUN Huinan,XIA Zhaoyong.The development status of counter-concurrent flow continuous dryer in China[J].Modern Food,2021(8): 23 - 24,29 .
    [20] 王赫.回归分析在顺逆流粮食干燥机干燥过程建模中的应用[J].现代食品,2022,28(16): 5 - 8,13 .

    WANG He.Application of regression analysis in modeling drying process of counter and current grain dryer[J].Modern Food,2022,28(16): 5 - 8,13 .
    [21] 李杰,邸坤,马云霞.顺混流粮食干燥机的开发设计和实际应用[J].粮食仓储科技通讯,2006(1): 45 - 46 .
    [22] 邸坤.HNST500环保型连续式逆顺流稻谷保质干燥机的研发[J].河南工业大学学报(自然科学版),2012,33(1): 75 - 78, 89 .

    DI Kun.Research on HHNST500 environmental-production continuous counter-concurrent flow quality preservation paddy dryer[J].Journal of Henan University of Technology(Natural Science Edition),2012,33(1): 75 - 78,89 .
    [23] 邸坤,李杰.中国粮食干燥节能减排新技术和新设备[J].粮食与饲料工业,2011(12): 16 - 21 .

    DI Kun,LI Jie.New technology and equipment of energy saving and emission reduction on grain drying system in China[J].Cereal & Feed Industry,2011(12): 16 - 21 .
    [24] 李呈林,孙东旺,何立其.一种新型混流式循环谷物干燥机的研制[J].农业技术与装备,2021(10): 12 - 14 .

    LI Chenglin,SUN Dongwang,HE Liqi.Development of a new type of mixed flow circulation grain dryer[J].Agricultural Technology & Equipment,2021(10): 12 - 14 .
    [25] 张海洋,马迎强,高海燕.中国南车神阳5HSZ-C-50小型连续性粮食干燥机电气控制系统的改造[J].大众标准化,2021(18): 238 - 240 .
    [26] 赵海瑞.粮食干燥环流型除湿供热热泵系统的研究与应用[J].粮食与食品工业,2021,28(4): 56 - 58,61 .

    ZHAO Hairui.Research and application of circulatory dehumidification heat pump system for grain drying[J].Cereal & Food Industry,2021,28(4): 56 - 58,61 .
    [27] 黄超,张晓波,甘华胜,等.角状盒结构优化数值模拟及试验分析[J].包装与食品机械,2023,41(5): 23 - 29 .

    HUANG Chao,ZHANG Xiaobo,GAN Huasheng,et al.Numerical simulation and experimental analysis of corner box structure optimization[J].Packaging and Food Machinery,2023,41(5): 23 - 29 .
    [28] 农业部规划设计研究院.太阳能双循环农产品干燥设备及其在干燥农产品中的应用:CN201510609677.X[P].2015-12-02.
    [29] 张伟.5HYWP-8310型移动式粮食烘干机的性能及特点[J].当代农机,2022(2): 21 .
    [30] 顾旭彪,刘军民,唐竹,等.5HPY-35小型移动式烘干机[R].北京:中农集团农业装备有限公司,2021-08-13.
    [31] 韩峰,吴文福,刘哲,等.粮食连续干燥工艺及过程控制模拟实验系统[J].粮油食品科技,2023,31(2): 83 - 89 .

    HAN Feng,WU Wenfu,LIU Zhe,et al.Simulation experiment system of grain continuous drying process and process control[J].Science and Technology of Cereals,Oils and Foods,2023,31(2): 83 - 89 .
    [32] PAGE G E.Factors influencing the maximum rates of air drying shelled corn in thin layers[M].Weat Lafayette:Purdue University,1949.
    [33] THOMPSON T L,PEART R M,FOSTER G H.Matllematical simulation of corn drying a new model[J].Transaction of the ASAE,1968,11(4): 582 - 586 . doi: 10.13031/2013.39473
    [34] WONGWISES S.Development of mathematical models for predicting the thin layer drying rate of long grain rough rice[J].Drying Technology,1989,32(17): 22 - 28 .
    [35] KUCUK H,MIDILLI A,KILIC A,et al.A review on thin-layer drying-curve equations[J].Drying Technology,2014,32(7): 757 - 773 . doi: 10.1080/07373937.2013.873047
    [36] JANG J S R.ANFIS:adaptive-network-based fuzzy inference system[J].IEEE Transactions on Systems,Man,and Cybernetics,1993,23(3): 665 - 685 . doi: 10.1109/21.256541
    [37] WANG L X.Stable adaptive fuzzy control of nonlinear systems[J].IEEE Transactions on Systems,Man,and Cybernetics,1993,1(2): 146 - 155 .
    [38] 金毅,谢辉煌,尹君,等.基于LSTM-MPC的粮食干燥机智能控制方法研究[J].粮油食品科技,2023,31(5): 25 - 34 .

    JIN Yi,XIE Huihuang,YIN Jun,et al.Research on intelligent control method of grain drying based on LSTM-MPC[J].Science and Technology of Cereals,Oils and Foods,2023,31(5): 25 - 34 .
    [39] 谢辉煌,金毅,张忠杰,等.基于LSTM网络的粮食干燥机水分预测与优化[J].中国粮油学报,2023,38(11): 196 - 204 .

    XIE Huihuang,JIN Yi,ZHANG Zhongjie,et al.Prediction and optimization of grain dryer outlet moisture content based on LSTM[J].Journal of the Chinese Cereals and Oils Association,2023,38(11): 196 - 204 .
    [40] 邢思敏,高香兰,林子木,等.基于极限学习机的玉米干燥系统出机水分含量预测模型[J].沈阳农业大学学报,2023,54(5): 619 - 626 .

    XING Simin,GAO Xianglan,LIN Zimu,et al.A model for predicting the outgoing moisture content of corn drying system based on extreme learning machine[J].Journal of Shenyang Agricultural University,2023,54(5): 619 - 626 .
    [41] 雷得超,付彦涛,金厚熙,等.BP神经网络在玉米干燥含水率预测中的研究[J].粮食加工,2022,47(4): 45 - 47 .

    LEI Dechao,FU Yantao,JIN Houxi,et al.Study on prediction of corn drying moisture content based on BP neural network[J].Grain Processing,2022,47(4): 45 - 47 .
    [42] 王赫.BP神经网络在粮食干燥预测模型中的应用[J].粮食加工,2022,47(1): 74 - 76 .

    WANG He.Application of BP neural network in grain drying prediction model[J].Grain Processing,2022,47(1): 74 - 76 .
    [43] 钟嘉豪,李长友,黄嘉禧,等.基于BP神经网络的5HNH-15干燥机出粮水分研究[J].农机化研究,2023,4: 1 - 7,14 .

    ZHONG Jiahao,LI Changyou,HUANG Jiaxi,et al.Research on grain moisture of 5HNH-15 dryer based on BP neural network[J].Journal of Agricultural Mechanization Research,2023,4: 1 - 7,14 .
    [44] 王雪.节能高效的多筒式农产品烘干机的设计研究[J].南方农机,2022,53(8): 75 - 77 .
    [45] 孙钰涵,周钰,莫云浪.粮食干燥机智能模拟控制系统的研究初探[J].现代化农业,2019(12): 60 - 61 .
    [46] 钱生越,张旭东,孔爱民,等.粮食烘干储藏一体化物联网监控系统初探[J].农业开发与装备,2023(2): 20 - 23 .
    [47] 吴海华,吴尘萱,刘小虎,等.新时代农业装备攻关创新路径研究[J].农业工程,2023,13(3): 5 - 9 .

    WU Haihua,WU Chenxuan,LIU Xiaohu,et al.Research on innovation path of agricultural equipment in new era[J].Agricultural Engineering,2023,13(3): 5 - 9 .
    [48] 汪庥宇.循环式干燥机作业量仿生监测原理及系统研究[D].长春:吉林大学,2023.

    WANG Xiuyu,Research on the principle and system of biomimetic monitoring for the operating capacity of a circulating dryer[D].Changchun:Jilin University,2023.
  • 加载中
表(2)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  5
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 修回日期:  2024-01-11
  • 出版日期:  2024-02-20

目录

    /

    返回文章
    返回