中国农业机械化科学研究院集团有限公司 主管

北京卓众出版有限公司 主办

数字孪生驱动的温室大棚3D智能管理平台构建

3D intelligent management platform construction for greenhouse driven by digital twins

  • 摘要: 针对传统温室大棚管理中存在的信息孤岛、调控滞后及资源浪费等问题,提出一种基于数字孪生技术的温室3D智能管理平台(以下简称智能管理平台)构建方法。通过融合物理机理建模与机器学习技术,构建双向动态映射的数字孪生模型,实现温室环境数据的实时采集、模型更新与闭环控制。智能管理平台采用分层架构设计,集成多源感知网络、边缘计算、3D可视化及智能决策算法,支持从数据采集到策略反馈的全流程闭环管理。试验表明,智能管理平台可显著提升温室管理效率,温度预测均方根误差降低70%、用电量减少20%、用水量减少25%;同时,番茄单株产量提升14.6%,果实品质(糖度、维生素C含量)及商品果率显著优化。研究成果为智慧农业精准化、智能化管理提供了理论支撑与技术参考。

     

    Abstract: In response to problems such as information silos, delayed regulation, and resource wastage in traditional greenhouse management, a method for constructing a 3D intelligent greenhouse management platform based on digital twin technology(referred to as intelligent management platform)was proposed.By integrating physical mechanism modelling with machine learning technology, a two-way dynamic mapping digital twin model was constructed to achieve real-time collection of greenhouse environmental data, model updates, and closed-loop control.Intelligent management platform adopted a layered architecture design, integrating multi-source sensing networks, edge computing, 3D visualisation, and intelligent decision-making algorithms to support whole-process closed-loop management from data collection to strategy feedback.Experiments showed that intelligent management platform significantly improved greenhouse management efficiency, with a 70% reduction in root-mean-square error for temperature prediction, 20% decrease in electricity consumption, and 25% decrease in water consumption.Concurrently, of tomato single plant yield increased by 14.6%, while fruit quality(sugar content, vitamin C content)and commercial fruit rate were significantly optimized.Research results provided theoretical support and technical reference for precision and intelligent management in smart agriculture.

     

/

返回文章
返回