中国农业机械化科学研究院集团有限公司 主管

北京卓众出版有限公司 主办

面向智能植保机器人的病害识别与路径规划耦合算法

Coupled algorithm for disease identification and path planning in intelligent plant protection robots

  • 摘要: 为解决传统植保机器人识别与路径解耦所导致的响应滞后与作业冗余问题,提出一种融合病害识别与路径规划耦合算法框架,构建识别−规划−作业闭环控制体系。首先,病害识别模块基于GhostNet-CBAM结构优化YOLOv8n,结合图像增强与热度图生成实现高精度病斑检测。随后,路径模块引入热度引导型A*搜索策略,动态构建高优先级作业路径。最后,耦合控制机制实现识别驱动路径重构与喷洒响应联动。试验基于自采与公开数据集的6类病斑训练病害识别模型,并进行仿真试验验证模型性能。结果表明,耦合算法各指标均优于传统策略。通过消融试验和耦合解耦对比试验,验证耦合算法的有效性和必要性。研究结果为数字化植保公共治理提供了高效、精准的方案。

     

    Abstract: To address response delays and redundant operations caused by decoupling between identification and path planning in conventional plant protection robots, an integrated algorithm framework combining disease identification with path planning, and execution under closed-loop control was proposed.First, a disease identification model optimized YOLOv8n based on GhostNet-CBAM architecture, leveraging image augmentation and heatmap generation to achieve high-precision disease detection.Next, path module employed a heatmap-guided A* search strategy to dynamically construct high-priority task paths.Finally, a coupled control mechanism enabled coordinated identification-driven path reconfiguration and spray responses.Experiments were conducted on six categories disease classification model trained using both self-collected and publicly available datasets across, with simulation tests verifying the model's performance.Results demonstrated that coupled algorithm consistently outperforming traditional strategies across multiple metrics.Ablation tests and coupled-decoupled comparison experiments validated effectiveness and necessity of coupled algorithm.This work provided an efficient and accurate path for digital plant public protection management.

     

/

返回文章
返回