中国农业机械化科学研究院集团有限公司 主管

北京卓众出版有限公司 主办

基于BP神经网络的跌扩型消力池设计应用

Design and Application of Falling-Sill and Expanding Stilling Pool Based on BP Neural Network

  • 摘要: 增大跌扩型底流消力池的突扩宽度和跌坎深度,可以有效降低消力池内临底流速和改善出池水流流态,一定程度上减小消力池长度。基于试验研究结果,应用BP神经网络理论,以突扩宽度、跌坎深度及测点距离作为模型输入参数,临底流速作为输出参数,建立BP神经网络预测模型。结果表明,所预测的临底流速模型参数试验值与预测值之间的平均相对误差<10%,决定系数R2达到0.977 6,亦即基于智能算法的预测模型能够对水工模型试验研究形成很好补充。在此基础上,进一步给出了突扩宽度、跌坎深度变化和不同跌扩组合变化对消力池池长的影响。相对而言,增加突扩宽度对消力池长度减小的影响小于增加跌坎深度;同时增加突扩宽度和跌坎深度,能够更有效地降低消力池所需要的长度。

     

    Abstract: Increasing abruptly expanding width and depth of the sill of bottom-diffusion bottom-flow stilling pool can effectively reduce bottom flow velocity in bottom of stilling pool and improve flow pattern of outflow water,and reduce length of stilling pool to a certain extent.Based on experimental research results,the BP neural network theory was used to establish BP neural network prediction model with sudden expansion width,sill depth and measuring point distance as model input parameters,and bottom flow rate as output parameter.Results showed that average relative error between experimental value and predicted value of predicted bottom velocity model parameters was less than 10%,and determination coefficient R2 reached to 0.9776,which meant that prediction model based on intelligent algorithm could complement a hydraulic model test research well.On this basis,effects of sudden expansion width,change of drop sill depth,different combinations of drop and expansion combinations on pool length of stilling pool were further given.Relatively speaking,effect of increasing burst width on reduction of stilling pool length was less than that of increasing fall depth.At the same time,increasing bursting width and fall depth could more effectively reduce required length of stilling pool.

     

/

返回文章
返回