中国农业机械化科学研究院集团有限公司 主管

北京卓众出版有限公司 主办

基于高光谱成像技术的鲜食核桃仁水分检测研究

Moisture Detection of Fresh Walnut Kernels Based on Hyperspectral Imaging Technology

  • 摘要: 为实现对货架期内青皮核桃仁水分的快速预测,利用高光谱成像技术采集货架期核桃青皮光谱数据,测定核桃仁含水量,利用连续投影法(SPA)提取11个特征波长,建立了偏最小二乘法(PLS)、多元线性回归(MLR)和最小二乘支持向量机(LS-SVM)模型。结果表明,LS-SVM建模效果最好,预测集的相关系数RP=0.800 7,均方根误差RRMSEP=2.189 7。研究表明,利用高光谱成像技术可以实现货架期青皮核桃仁水分快速预测,为青皮核桃的贮运销提供指导。

     

    Abstract: In order to realize rapid prediction of fresh walnut kernel moisture during shelf period,hyperspectral technology was used to collect spectral data of walnut green peel and moisture content of walnut kernel was measured.Eleven characteristic wavelengths were extracted by continuous projection method(SPA)to establish partial least squares(PLS),multiple linear regression(MLR),least squares-support vector machine(LS-SVM)model.Results showed that the LS-SVM modeling effect was the best,correlation coefficient RP of the prediction set was 0.800 7,and root mean square error RRMSEP was 2.189 7.Studies have shown that the use of hyperspectral technology could achieve rapid prediction of moisture of fresh peel walnut kernels during shelf life,providing guidance for storage,transportation and marketing of fresh peel walnuts.

     

/

返回文章
返回