留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多轴压缩装置滑动轴承−转子系统不平衡响应分析

李俞峰 常昊 葛世祥 李冬阳 杨永飞 孔阳阳

李俞峰,常昊,葛世祥,等.多轴压缩装置滑动轴承−转子系统不平衡响应分析[J].农业工程,2023,13(8):86-91. doi: 10.19998/j.cnki.2095-1795.2023.08.015
引用本文: 李俞峰,常昊,葛世祥,等.多轴压缩装置滑动轴承−转子系统不平衡响应分析[J].农业工程,2023,13(8):86-91. doi: 10.19998/j.cnki.2095-1795.2023.08.015
LI Yufeng,CHANG Hao,GE Shixiang,et al.Unbalance response analysis of sliding bearing and rotor system in multi axis compression device[J].Agricultural Engineering,2023,13(8):86-91. doi: 10.19998/j.cnki.2095-1795.2023.08.015
Citation: LI Yufeng,CHANG Hao,GE Shixiang,et al.Unbalance response analysis of sliding bearing and rotor system in multi axis compression device[J].Agricultural Engineering,2023,13(8):86-91. doi: 10.19998/j.cnki.2095-1795.2023.08.015

多轴压缩装置滑动轴承−转子系统不平衡响应分析

doi: 10.19998/j.cnki.2095-1795.2023.08.015
基金项目: 国家重点研发计划项目(2020YFB2008100)
详细信息
    作者简介:

    李俞峰,硕士,高级工程师,主要从事高速齿轮传动技术研究应用及高速转子动力学研究E-mail:13837112195@163.com

    孔阳阳,通信作者,博士,工程师,主要从事工业装备驱动装置及智能装备可靠性研究E-mail:kongyang208123@163.com

  • 中图分类号: S220

Unbalance Response Analysis of Sliding Bearing and Rotor System in Multi Axis Compression Device

  • 摘要:

    从转子动力学角度出发,结合达朗贝尔原理和传递矩阵法建立了转子离散化动力学方程,基于流体动压轴承理论和有限差分法计算非线性油膜压力,提出了一种由滑动轴承支承的多轴离心压缩机转子系统动力学模型,并从轴心轨迹、轴承偏心率和频谱响应等方面分析了该非线性轴承−转子系统的不平衡效应及振动特征。结果表明,转子在理想化的不平衡量下,振动特征主要表现为次同步涡动。随着不平衡量的增加,转子主同步响应增大,在0.2 g·mm不平衡量下,转子系统出现多重椭圆轨迹,非常不利于转子系统的使用寿命。在G1平衡精度下,转子系统具有良好的动力学特性,可保证多轴压缩机主轴转子系统在正常工况下稳定健康运转。

     

  • 图 1  多轴离心压缩机转子系统动力学模型

    Figure 1.  Rotor system dynamics model of multi-axis centrifugal compressor

    图 2  滑动轴承坐标系

    Figure 2.  Sliding bearing coordinate system

    图 3  油膜网格差分关系

    Figure 3.  Difference relation of oil film grid

    图 4  滑动轴承油膜压力分布

    Figure 4.  Oil film pressure distribution of plain bearing

    图 5  多水平不平衡量下轴心轨迹、FFT频谱、轴承偏心率

    Figure 5.  Multi level imbalance of axis trajectory,FFT,bearing eccentricity

    表  1  多轴离心压缩机转子系统结构参数

    Table  1.   Rotor system structure parameters of multi-axis centrifugal compressor

    参数 数值
    质量/kg M1=56.24,M2=M4=14.40,M3=39.00,M5=76.38
    轴段长度/mm l1=310,l2=l3=225,l4=321
    轴段直径/mm d1= d6=115,d2= d3= d4= d5=95
    极转动惯量/(10−3 kg·m−2 Jρ1=805,Jρ2= Jρ4=21,Jρ3=66,Jρ5=1384
    直径转动惯量/(10−3 kg·m−2 Jd1=518,Jd2= Jd4=14,Jd3=40,Jd5=874
    杨氏模量/GPa E=206
    临界转速/(r·min−1 一阶临界转速4800;二阶临界转
    速36398
    下载: 导出CSV

    表  2  滑动轴承结构参数

    Table  2.   Structure parameters of plain bearing

    参数 数值
    润滑油黏度μ/(10−3 Pa·s) 46
    轴承温度/ °C 进油温度40,出油温度63
    轴承内径r/mm 95
    轴承宽度L/mm 70
    轴承间隙c/mm 0.09
    单瓦块角度θ1/(°) 58
    下载: 导出CSV

    表  3  滑动轴承油膜压力计算结果

    Table  3.   Calculation results of oil film pressure of sliding bearing

    参数 瓦块1 瓦块2 瓦块3 瓦块4 瓦块5
    1 #滑动轴承 最小油膜厚度/mm 0.102 0.110 0.091 0.070 0.077
    最大油膜压力/MPa 2.882 2.425 3.665 6.268 5.190
    2 #滑动轴承 最小油膜厚度/mm 0.102 0.108 0.089 0.071 0.079
    最大油膜压力/MPa 2.853 2.528 3.821 6.096 4.868
    下载: 导出CSV
  • [1] KIM D,LEE A S,CHOI B S.Evaluation of foil bearing performance and nonlinear rotordynamics of 120 kW oil-free gas turbine generator[J].Journal of Engineering for Gas Turbines and Power,2014(3): 032504 .
    [2] KOUTSOVASILIS P.Impact of thrust bearing pad design and allocation on automotive turbocharger rotordynamics[J].Journal of Sound and Vibration,2020,485: 115546 . doi: 10.1016/j.jsv.2020.115546
    [3] FILATOV A,HAWKINS L.Comparative study of axial/radial magnetic bearing arrangements for turbocompressor applications[J].Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2016,230(4):300-310.
    [4] SAN ANDRES L,YANG J,DEVITT A.On tilting pad carbon-graphite porous journal bearings:measurements of imbalance response and comparison to predictions of bearing performance and system dynamic response[J].Tribology Transactions,2021,64(6): 981 - 995 . doi: 10.1080/10402004.2021.1875091
    [5] FILIPPI M,CARRERA E.Stability and transient analyses of asymmetric rotors on anisotropic supports[J].Journal of Sound and Vibration,2021,500: 116006 . doi: 10.1016/j.jsv.2021.116006
    [6] FRISKNEY B,MOHAMMADPOUR M,THEODOSSIADES S,et al.Effects of transmission shaft flexibility on rolling element bearing tribodynamics in a high-performance transmission[J].Mechanism and Machine Theory,2021,165: 104440 . doi: 10.1016/j.mechmachtheory.2021.104440
    [7] MERELES A,CAVALCA K L.Modeling of multi-stepped rotor-bearing systems by the continuous segment method[J].Applied mathematical modelling,2021,96: 402 - 430 . doi: 10.1016/j.apm.2021.03.001
    [8] LIANG F,ZHOU M,XU Q.Effects of semi-floating ring bearing outer clearance on the subsynchronous oscillation of turbocharger rotor[J].Chinese Journal of Mechanical Engineering,2016,29(5): 901 - 910 . doi: 10.3901/CJME.2016.0421.057
    [9] LANDRY C,DUBOIS P K,PLANTE J S,et al.Rotordynamics of a highly flexible hub for inside-out ceramic turbine application:finite element modeling and experimental validation[J].Journal of Vibration and Acoustics,2018,140(1): 011013 . doi: 10.1115/1.4037700
    [10] BIN G F,HUANG Y,GUO S P,et al.Investigation of induced unbalance magnitude on dynamic characteristics of high-speed turbocharger with floating ring bearings[J].Chinese Journal of Mechanical Engineering,2018,31(1): 1 - 11 . doi: 10.1186/s10033-018-0219-4
    [11] CHATZISAVVAS I,NOWALD G,SCHWEIZER B,et al.Experimental and numerical investigations of turbocharger rotors on full-floating ring bearings with circumferential oil-groove[C]//Turbo Expo:Power for Land,Sea,and Air.American Society of Mechanical Engineers,2017,50 954:V008T26A025.
    [12] XIE Z,SHEN N,ZHU W,et al.Theoretical and experimental investigation on the influences of misalignment on the lubrication performances and lubrication regimes transition of water lubricated bearing[J].Mechanical Systems and Signal Processing,2021,149: 107211 . doi: 10.1016/j.ymssp.2020.107211
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 修回日期:  2023-05-18
  • 出版日期:  2023-08-20

目录

    /

    返回文章
    返回